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Abstract

Due of the increased crime rate during busy events or
in suspiciously quiet regions, security is always a
major worry in every sector of life. Computer vision
has a wide range of applications in the identification
and monitoring of abnormalities. Video surveillance
systems that can detect and analyse the scene and
anomalous occurrences play an important role in
intelligence monitoring because of the rising need for
safety, security, and personal property protection.
The SS D and Faster RCNN methods, which are
based on convolution neural networks (CNNs), are
used in this study to create automated gun (or
weapon) identification. Two datasets are used in the
proposed implementation. One dataset featured pre-
labeled photographs, while the other had images that
had to be manually labelled by the researcher.
Algorithms may be used in real-world scenarios
depending on the tradeoff between speed and
accuracy, but results are summarized

Keywords— The use of artificial intelligence in
surveillance systems, the detection of armed
intruders, and the development of a faster RCNN
(Al).

INTRODUCTION

A weapon or anamoly detection is the discovery of
anomalous occurrences or things, which are not
deemed to be a regular event or item in a pattern or
objects contained in a dataset, and are therefore
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distinct from the existing patterns. Patterns that are
out of the ordinary are known as anomalies. Since
anomalies are linked to specific phenomena, it's
difficult to generalise about them. Object detection
employs feature extraction and learning techniques or
models to identify different types of things [6]. [6]
Gun detection and categorization are the primary
goals of the proposed implementation. Because a
false warning might trigger unfavourable reactions,
accuracy is also an issue [11]. [12]. To have the best
of both worlds, it's necessary to choose the
appropriate strategy. Figure 1 illustrates how deep
learning may be used to identify weapons. The input
video is broken down into its individual frames. An
method for frame differencing is used, and a
bounding box is first generated [7, 8, 14].
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Fig.1.Methodology
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T racking and detection in Fig. 2 Figure 2 depicts the
process of detecting and tracking an item. An object
detection algorithm is given data from a newly
constructed dataset that has been trained and refined.
The detection technique for guns is selected
according on the application (SSD or fast RCNN).
The method uses a variety of machine learning
models, such as the Region Convolutional Neural
Network (RCNN) and Single Shot Detection (SSD),
to tackle the detection issue [2][9][15].

1. IMPLEMENTATION A.

Resources or components used for
implementation

3.4 of the OpenCV computer vision library is now
available as an open source project.

High-level programming language for image
processing applications such as Python 3.5.

In this dataset, you'll find a collection of common
items, each with a unique name.

e Tensorflow 1.1 and Anaconda 1.1
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GeForce is a brand of graphics processing units
created by Nvidia. Case I: Video Specifications in the
Dataset Specifications

* Intel i5 7th Generation System Configuration (4
Cores)

An NVIDIA GeForce 820M graphics card powers
this system.

There are 29.97 frames per second for the input.

the output frame rate is 0.20 frames per second.

emov is a video formatCOCO and self-created
picture datasets are included in the video.

In this case, the number of courses taught was five.
* Intel i5 7th Generation processor (4 Cores)

* Clock Speed: 2.5 GHz « GPU: NVIDIA GeForce
820M -

Dimensions of the input image: 200-300 KB;
Training Time: 0.6 seconds (SSD)

* 1.7 milliseconds (RCNN)

Dataset of COCO and self-created images, in.JPG
image format

Five Cs: Assumptions and Constraints for the
implementation

» The weapon is in full or partial view of the camera
and has been completely or partly exposed.

* The ammo may be seen against a light backdrop.

In order to speed up the identification of ammo, a
GPU with high-end computational capacity was
utilised.

* The system is not fully automated. There will be a
person in charge of verifying each and every gun
detection warning that is sent.

D. FASTER R-CN
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Fig 3. Layers in CNN Architecture [5]

As indicated in figure 3, the CNN and RCNN
architectures are shown in their respective layers. In
order to create region suggestions and to identify
objects, it has two networks: RPN and network.
Selective search is used to create the region
suggestions. The RPN network assigns a ranking to
anchors and region boxes.

Potinect Bourding

Fig 4. Faster R-CNN [5]
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Creating and Educating a Dataset Fatkun Batch
Image Downloader (chrome extension) may
download several Google Images at once and
download them all at once. After that, the photos are
downloaded and labelled. Training pictures make up
80% of the total number of photos, while testing
images make up 20%. Single Shot Detector (SSD)
was used to train the ammo dataset, and 2669
iterations/steps were done on the model to confirm
that the loss was less than 0.05. Test and training
photographs are shown in the folder shown in Figure
5. The picture in Figure 6 has labels added.

Name

test
train
= test_labels

= train_labels

fig.5. Folder with test and train images
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Fig.6. Image along with its label
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Fig.7. Command to create CSV files for the image
labels XML data is converted into CSV file by
executing this command in Anaconda Prompt:
python xml_to_csv.py as shown in figure 7.
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Photos that have been manually labelled are shown in
Fig.13. Figure 13 depicts xml-formatted images, as
demonstrated (xml). Each picture was assessed using
838 and 241 photographs, respectively, as part of
training (22 percent testing and 78 percent training).
Anaconda Prompt's python xml to csv.py command
turns XML data into a CSV file. The truth box and
the size of the actual world are shown in this way.
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predicted, .., * variance( = — AT Zcenter
prioriw
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In order to verify that the item is detected, the label
map and tf record file must be changed.There is a file
called a "label map" that contains information on
every potential category of thing that may exist.
Labels for the AK47 have been added to the
map.Object identification and detection

We update the label map and TFF records to make
sure the item is detected. A file called a label map
will be used tocontain information on all potential
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types of objects. The AK47 has been added to the
label map. A sensitivity of 72 percent and 67 percent,
respectively, were found for the COLT M1911 and
the Smith & Wesson Model handgun in Figures 19
and 20. B. Detection of weapons with a faster R-
CNN Using pre-labeled photos as an example

Both the COLT M1911 and the Smith & Wesson
Model pistol were detected with a sensitivity of 72%
and 67%, respectively, in Figures 19 and 20,
respectively. B. Faster R-CNN for weapon detection
Example 1: Using a collection of pre-labeled images

A faster R-CNN is used to detect the AK47 (Fig. 22).
Figure 22 demonstrates the identification of an AK47
in the hands of the military with a 99 percent and 81
percent accuracy rate, respectively.
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Recognizing the AKM47 assault rifle in the video
stream (Fig. 23) As you can see in Figure 23, we
were able to accurately recognise an AK47 rifle from
the video stream. An picture dataset produced by the

user is used in Case 2.
Colt M1911: 74N

<)

< e

Fig.24. Detection of Colt M1911 gun

rsmM&WumModel 10 Revolver: 91% fi—

0

:

Fig.25. Detection of Smith & Wesson Model 10 gun
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Figures 24 and 25 show how the Faster R-CNN
approach correctly identified a Smith & Wesson
Model 10 and a Colt M1911. C. Analyzing the Data
Table | shows the results of a quicker R-CNN
algorithm's performance study.

IV. Conclusions

Pre-labeled and self-created photo datasets are used
to simulate weapon (gun) detection. When employing
these algorithms in real time, the trade-off between
speed and accuracy must be considered. The SSD
algorithm has a frame rate of 0.736 s/s. Faster RCNN
delivers a frame rate of 1.606s/frame when compared
to SSD. 84.6 percent more accurate than Slower
RCNN is Faster RCNN. Comparing SSD's
performance against that of the more accurate
RCNN, it comes up short with an accuracy rate of
just 73.8%. Due to SSD's faster speed, real-time
detection was made feasible, however the Faster
RCNN was more accurate. Large datasets may be
trained using GPUs and high-end DSP and FPGA
systems.
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